1.4 Seed extract coagulation-flocculation Coagulation-flocculation - TopicsExpress



          

1.4 Seed extract coagulation-flocculation Coagulation-flocculation with extracts from natural and renewable vegetation has been widely practiced since recorded time, and appears to be an effective and accepted physical-chemical treatment for household water in some parts of the world. In particular, extracts from the seeds of Moringa species, the trees of which are widely present in Africa, the Middle East and the Indian subcontinent, have the potential to be an effective, simple and low-cost coagulant-flocculent of turbid surface water than can be implemented for household water treatment (Jahn and Dirar, 1979; Jahn, 1981; Jahn, 1988; Olsen, 1987). The effectiveness of another traditional seed or nut extract, from the nirmali plant or Strychnos potatorum (also called the clearing nut) to coagulate-flocculate or precipitate microbes and turbidity in water also has been determined (Tripathi et al., 1976; Able et al, 1984). Microbial reductions of about 50% and 95% have been reported for plate count bacteria and turbidity, respectively. Despite the potential usefulness of Moringa oleifera, Strychnos potatorum and other seed extracts for treatment of turbid water, there has been little effort to characterize the active agents in these seed extracts or evaluate the efficacy as coagulants in reducing microbes from waters having different turbidities. The chemical composition of the coagulant in Strychnos potatorum has been identified as a polysaccharide consisting of a 1:7 mixture of galactomannan and galactan. These findings suggest that such seed extracts may function as a particulate, colloidal and soluble polymeric coagulant as well as a coagulant aid. The presence of other constituents in these seed extracts are uncertain, and there is concern that they may contain toxicants, because the portions of the plant also are used for medicinal purposes. Also, little has been done define, optimize and standardize conditions for their use. Furthermore, there appears to be little current effort to encourage or disseminate such treatment for household water or determine its acceptability, sustainability, costs and effectiveness in reducing waterborne infectious disease. who.int/water_sanitation_health/dwq/wsh0207/en/index6.html
Posted on: Mon, 10 Jun 2013 17:54:58 +0000

Trending Topics



Recently Viewed Topics




© 2015