BIOGRAFÍA DE LA FÍSICA GEORGE GAMOW Universidad de Colorado, 1 - TopicsExpress



          

BIOGRAFÍA DE LA FÍSICA GEORGE GAMOW Universidad de Colorado, 1 de junio de 1960. librosmaravillosos/biografiadelafisica/capitulo04.html 11. Teoría cinética del calor Durante el último cuarto del siglo pasado (siglo XIX) fue desarrollada aún más la teoría del calor y la correlación de la ley fundamental de la termodinámica con la idea de que el calor es la energía del movimiento de las pequeñas partículas —las moléculas de que están formados los cuerpos materiales—. principalmente por Ludwig Boltzmann en Alemania, James Clerk Maxwell en Inglaterra y Josiah Gibbs en los Estados Unidos. Cuando se estudia el movimiento de las innumerables pequeñas moléculas que forman los cuerpos materiales es, desde luego, imposible (así como inútil) seguir exactamente la trayectoria de cada partícula individual. Lo que deseamos conocer es el comportamiento medio de las moléculas bajo diferentes condiciones físicas, lo que nos obliga al empleo de las leyes estadísticas. Los métodos estadísticos son usados siempre en las relaciones humanas cuando está implicado un gran número de individuos. Las compañías de seguros, las oficinas estatales que tratan de la producción alimenticia por los agricultores, etc., fundan su política en datos estadísticos y no se interesan por la muerte de fulano de tal o los detalles relativos a la granja que lleva zutano. Si se tiene en cuenta que la población de los Estados Unidos es aproximadamente de 170.000.000 de habitantes, mientras que el número de moléculas en un centímetro cúbico de aire es de 20.000.000.000.000.000.000, vemos que las leyes estadísticas tienen que aplicarse mucho más exactamente en el caso de las moléculas que en el caso de las personas. Es sumamente fácil aplicar las consideraciones estadísticas al caso de los gases en los cuales, en contraste con los líquidos y sólidos, las moléculas se mueven libremente a través del espacio chocando unas con otras y con las paredes del recipiente. Las paredes de una vasija que contiene gas están cometidas al bombardeo constante de las moléculas que rebotan en ellas, lo que proporciona una fuerza constante, la presión del gas. Supongamos que la misma cantidad de gas está contenida en un recipiente que solo tiene la mitad del volumen que el anterior. Como en este caso el número de moléculas por unidad de volumen será dos veces mayor, dos veces más moléculas rebotarán cada segundo en una determinada área de la pared y por tanto la presión del gas será doble. Esto explica la ley de la proporción inversa de la presión y el volumen del gas descubierta por Robert Boyle. Veamos ahora lo que ocurre cuando las moléculas se mueven más rápidamente. Se producirán dos efectos: Más moléculas chocarán contra una determinada área de la pared por segundo; La fuerza de cada impacto determinada por el momento mecánico ("cantidad de movimiento" en la terminología de Newton) de las moléculas aumentará. Como ambos efectos son proporcionales a la velocidad molecular, la presión aumentará como el cuadrado de esta velocidad o, lo que es lo mismo, como la energía cinética de las moléculas. Hemos visto que, conforme a la ley de Charles y Gay-Lussac, la presión del gas mantenido en un volumen constante es proporcional a su temperatura absoluta, de lo que se deduce que la temperatura absoluta es simplemente la medida de la energía del movimiento térmico de las moléculas. No importa de qué clase de moléculas se hable, puesto que una de las leyes fundamentales de la mecánica estadística, conocida como "ley de equipartición de la energía”, declara que en el caso de usa mezcla de un gran número de partículas de dos o más deferentes masas, la energía cinética media por partícula sigue siendo la misma. Así, por ejemplo, en una mezcla de moléculas de hidrógeno y moléculas de oxigeno, que son dieciséis veces más pesadas, la velocidad de las moléculas de oxigeno es cuatro veces menor que la de las moléculas de hidrógeno, de modo que el producto de sus masas por el cuadrado de su velocidad es la misma. A la temperatura de la habitación, es decir, a unos 300 °K absolutos, la energía del movimiento térmico es aproximadamente 0,0000000000000002 ergios, que, en el caso de las moléculas del aire corresponde a la velocidad de 50.000 cm/s. (aproximadamente 1.000 millas por hora). La energía del movimiento térmico determinado por la temperatura absoluta es, claro está, sólo el término medio de un gran número de partículas, y como siempre ocurre en los fenómenos estadísticos, la energía de las distintas moléculas puede mostrar una gran desviación del valor medio. Debido a los azares de sus mutuas colisiones, algunas de las moléculas pueden alcanzar por corto tiempo velocidades mucho mayores mientras otras pueden ir temporalmente más despacio. Mediante las leyes de la mecánica estadística se puede calcular el porcentaje de moléculas en un gas que se desvían en grados diferentes de la exacta velocidad media. Esta curva de distribución de las velocidades, que fue calculada primeramente por Maxwell y lleva su nombre, se muestra en la Figura 21. Figura 21. Curva de Maxwell de la distribución de velocidades. Otro concepto importante, en la teoría estadística de los gases es el de "trayecto medio libre", es decir, la distancia media recorrida por las moléculas entre dos colisiones. En el aire atmosférico es muy corta, tan sólo 0,00001 cm aproximadamente, mientras en el caso del gas sumamente enrarecido que llena el espacio interestelar una molécula puede recorrer muchas millas antes de encontrarse con otra. La brevedad de la trayectoria libre explica el hecho de que las moléculas, moviéndose tan rápidamente como lo hacen, tarden mucho tiempo en ir de un límite al otro de la habitación; de hecho, están en la situación del jugador de fútbol-rugby con la pelota en sus manos que corre hacia la línea de “gol" y es atajado casi a cada paso por sus adversarios. Naturalmente mientras un jugador de fútbol tiene la línea del gol como su meta y trata de correr hacia ella, las moléculas son ciegas en su movimiento y después de cada nueva colisión saltan en cualquier dirección. Se puede demostrar matemáticamente que en el caso de tal movimiento, llamado "marcha al azar", la distancia media recorrida después de varios pasos es igual a la longitud de cada paso multiplicada por la raíz cuadrada del número total de pasos, no por el número de pasos como ocurriría si todos fueran en la misma dirección. Así, tenemos la fórmula: En el caso de las moléculas de aire, la longitud de cada paso es 0,00001 cm y, si debe recorrer una distancia, por ejemplo, de 10 metros (1.000 cm) la fórmula anterior nos dice que el número total de pasos debe ser igual a A la velocidad de 50.000 cm por segundo, cada paso será realizado en De suerte que el tiempo total del recorrido será 10.000.000.000.000.000 · 0,0000000002 = 2.000.000 seg O sea ¡20 días! ¿Cómo explica la teoría cinética del calor la ley fundamental de la termodinámica que declara que en todos los procesos térmicos la entropía debe aumentar siempre? ¿Cuál es la significación de la entropía en cualquier caso desde el punto de vista de la teoría estadística del movimiento molecular? ¿Por qué el calor fluye siempre de los cuerpos más calientes a los más fríos y por qué no podemos transformar completamente una cierta cantidad de calor en energía mecánica mientras que no es problema transformar la energía mecánica en calor? La respuesta a todas estas preguntas resulta naturalmente si nos damos cuenta de lo que ocurre a las moléculas en estos casos. Consideremos un recipiente dividido en dos mitades por una división aisladora térmica; llenemos una mitad con un gas caliente; la otra con un gas frío y quitemos el tabique. ¿Qué sucederá? Evidentemente las moléculas rápidas del gas caliente perderán su energía en los choques con las moléculas más lentas del gas frio y el proceso continuará hasta la equipartición de la energía entre todas las moléculas, es decir, hasta que se llegue a la igualdad de temperatura en ambas mitades del recipiente. La situación es idéntica al caso de una caja cuya mitad inferior está llena de bolitas negras y la superior con blancas. Si sacudimos la caja, las bolitas se mezclarán de modo que las blancas y las negras con el tiempo quedan distribuidas por toda la caja desde el fondo hasta la superficie. ¿Podemos separarlas otra vez mediante más sacudidas al recipiente? Teóricamente, si. No hay, en efecto, razón por la cual esta separación no pudiera ser realizada, pero es muy improbable que lo fuera. Podemos haber sacudido la caja durante siglos, acaso millones de años, hasta que por puro azar todas las bolas negras vuelvan a reunirse en el fondo y todas las blancas en la cima. Esto es verdad también en el caso de las moléculas de gas. En principio es posible que una mitad de las moléculas sea retardada por los choques casuales mientras la otra mitad sea acelerada del modo correspondiente. Pero ¡es sumamente improbable! Una situación similar existe en el caso de la transformación de la energía mecánica en calor y viceversa. Imaginemos una bala que choca contra un muro de acero. Mientras la bala camina por el aire hacia el blanco, todas sus moléculas se mueven juntas en la misma dirección y con la misma velocidad (este movimiento común de las moléculas se sobrepone, por supuesto, a sus movimientos irregulares debidos a la temperatura inicial de la bala). Cuando el proyectil es detenido por el muro, este movimiento organizado se convierte en un movimiento irregular de las partículas individuales, aumentando la primitiva agitación térmica de las moléculas que forman la bala y el muro. Aquí podemos imaginar el proceso inverso en que las moléculas que constituyen el final de una barra metálica calentada a la llama tengan, por puro azar, sus velocidades térmicas orientadas en la misma dirección de suerte que esta posta metálica se separará como si fuera disparada por un fusil. Pero también esto es sumamente improbable. Así pues, vemos que la ley de la entropía creciente es simplemente la afirmación de que es todos los procesos naturales el movimiento organizado de las moléculas tiene la tendencia a convertirse en desorganizado o sin orden ni concierto. Todos los procesos se desarrollan en dirección del tipo menos probable de movimiento molecular al más probable, y el aumento de entropía corresponde al aumento de la probabilidad del tipo de movimiento molecular. Se puede deducir la relación entre la probabilidad de un cierto tipo de movimiento molecular y la entropía de la sencilla manera siguiente, propuesta primeramente por Ludwig Boltzmann. Supongamos dos sistemas termodinámicos, A y B, que pueden ser dos recipientes llenos de dos gases diferentes a dos presiones diferentes o bien otro sistema más complicado conteniendo líquidos, sus vapores, cristales sólidos, sus soluciones en los líquidos, etc. Si los dos sistemas tienen la misma temperatura T y ponemos en contacto uno con otro, no fluirá ningún calor en ninguna dirección y los dos sistemas permanecerán en el mismo estado que cuando estaban separados. Supongamos que una cierta cantidad de calor fluye del exterior en los sistemas, el sistema A ganando QAcalorías y el sistema B ganando QBcalorías. Si consideramos separadamente los dos sistemas, el aumento de su entropía será dada por QA/T y QB/T. Si los consideramos como un solo sistema compuesto, el aumento total de entropía será (QA + QB)/T. Como QA/T + QB/T = (QA + QB)/T concluimos que la entropía de un sistema compuesto es igual a la suma de las entropías de sus partes. ¿Cómo considerar esta situación desde el punto de vista de las probabilidades de los varios tipos de movimiento molecular? ¿Cómo expresar esta probabilidad para el sistema compuesto A y B en términos de las probabilidades de A y B aislados? Según la teoría matemática de las probabilidades, la probabilidad de un suceso compuesto (es decir, que debe satisfacer varias condiciones independientes) está dada por el producto de las probabilidades de los sucesos individuales de que está compuesto. Así, si de un niño se espera que sea "alto, moreno y guapo" las probabilidades de que se cumpla esa esperanza es el producto de las probabilidades de que sea alto, de que sea moreno y de que sea guapo. Si la probabilidad de que un hombre sea alto es 1/4 (es decir de una contra cuatro), de que sea moreno es 1/3 y de que sea guapo 1/50, la probabilidad de que se cumplan las tres condiciones es: 1/4 · 1/3 · 1/50 = 1/600 es decir, una contra 600. Así vemos que, mientras en un sistema termodinámico compuesto las entropías deben sumarse, las probabilidades deben multiplicarse. ¿Qué género de dependencia matemática entre dos cantidades satisface esta condición? Naturalmente la dependencia logarítmica, puesto que para multiplicar dos números debemos sumar sus logaritmos. Así, la entropía debe variar como el logaritmo de la probabilidad y debemos escribir: S = k log P donde k es un coeficiente numérico llamado coeficiente Boltzmann. La fórmula anterior constituye un puente entre la termodinámica clásica y la teoría cinética del calor y nos permite calcular todas las cantidades termodinámicas sobre la base de consideraciones estadísticas. 12. El demonio de Maxwell Una persona muy importante en la física estadística es el "demonio" de Maxwell, un producto de la imaginación de James Clerk Maxwell, que significó una gran contribución a esta rama de la ciencia. Imagínese un diminuto diablillo muy activo que puede ver las moléculas individuales y es bastante rápido para manejarlas como un campeón maneja las pelotas de tenis. Este demonio puede servimos para vencer la ley de la entropía creciente manipulando una ventanita en una pared que separa dos cámaras de gas, A y B. Se supone que el postigo de la ventana se desliza sin la menor fricción y que el demonio lo abre cuando ve que una partícula especialmente rápida se dirige hacia ella y lo cierra cuando la partícula que se aproxima es lenta. De esta suerte todas las moléculas rápidas de la distribución maxweliana pasarían a la cámara B mientras que solo las lentas quedarían en la cámara A. La B estaría más caliente y la A más fría con el calor fluyendo en la dirección equivocada contra la segunda ley de la termodinámica. ¿Por qué no podría hacerse lo mismo, no con auxilio de un demonio real, claro está, sino valiéndose de algún diminuto aparato físico construido ingeniosamente que actuase de la misma manera? Para comprender la situación recordemos una misteriosa pregunta formulada por el famoso físico austríaco Erwin Schrödinger en su interesantísimo folleto ¿Qué es la vida?: "¿Por qué los átomos son tan pequeños?" A primera vista esta pregunta parece en absoluto sin sentido, pero lo tiene y se puede responder si se invierte y preguntamos: ¿Por qué somos tan grandes (comparados con los átomos? La respuesta es sencillamente que un organismo tan complejo como un ser humano, con su cerebro, sus músculos, etc. no puede ser construido con unas cuantas docenas de átomos del mismo modo que no se puede construir una catedral gótica con unas cuantas piedras. El demonio de Maxwell y cualquier aparato mecánico que le sustituyera habría de estar construido de un pequeño número de átomos y no le sería posible realizar las complicadas tareas que se le asignasen. Cuanto más pequeño el número de partículas, tanto mayores las fluctuaciones estadísticas en su comportamiento, y un automóvil en el cual una de las cuatro ruedas saltara espontáneamente para convertirse en el volante mientras el radiador se convertía en el depósito de gasolina y viceversa, no sería un vehículo que se pudiera conducir. Del mismo modo, un demonio de Maxwell, real o mecánico, haría tantos errores al manejar las moléculas que todo el intento fracasaría por completo. 13. Movimiento térmico microscópico Las grandes cifras y las muy pequeñas citadas arriba para el mundo molecular son resultados del cálculo, puesto que las moléculas y sus movimientos son demasiado pequeños para observarlos aun con los mejores microscopios. Sin embargo, ocurre que podemos salvar el abismo que existe entre las moléculas invisibles y los grandes cuerpos que encontramos en nuestra experiencia cotidiana examinando el comportamiento de las pequeñas partículas, de 1 micrón (m), o así, de diámetro, que por una parte son suficientemente pequeñas para mostrar un movimiento térmico acusable y por otra parte bastante grandes para verlas con un buen microscopio. El botánico inglés Robert Brown observó por primera vez que las esporas de plantas que flotan en el agua nunca están quietos, sino implicados en una especie de "tarantela" saltando irregularmente de un lado a otro como si fueran golpeados constantemente por algún agente invisible. El propio Brown y sus contemporáneos científicos fueron incapaces de explicar este caprichoso comportamiento de las pequeñas partículas y solo casi cien años después fue interpretado por el físico francés Jean Perrin como el resultado de numerosos impactos recibidos por ellos procedentes de las moléculas de agua que se encuentran en un movimiento térmico. Los estudios de Perrin sobre el movimiento browniano suministraron una prueba indiscutible de la exactitud de la teoría cinética del calor y permitió a los físicos observar directamente las leyes estadísticas del movimiento que antes eran meras conjeturas teóricas. La exacta teoría matemática del movimiento browniano fue desarrollada por el joven Albert Einstein en uno de los tres artículos que publicó en 1905. Los otros dos eran sobre teoría cuántica de la luz y sobre la teoría de la relatividad. Hoy la teoría estadística del calor, llamada más generalmente "física estadística", únicamente puede compararse con la mecánica newtoniana en punto a claridad y perfección.
Posted on: Wed, 21 Aug 2013 07:21:10 +0000

Trending Topics



Recently Viewed Topics




© 2015