Earth Systems Engineering In the past five years, a new, - TopicsExpress



          

Earth Systems Engineering In the past five years, a new, promising concept called earth systems engineering (ESE) has emerged as an alternative to the usual way engineering has looked at the world. ESE acknowledges the complexity of world problems and encourages the use of more holistic and systemic tools to address interactions between the anthrosphere (i.e., the part of the environment made and modified by humans and used for their activities) and natural and cultural systems. In 1998, Allenby (1998) introduced the concept of ESE with reference to industrial ecology. The latter is defined as "the multidisciplinary study of industrial systems and economic activities, and their links to fundamental natural systems" (Allenby, 1999). First proposed in Japan in 1970, industrial ecology was brought to the attention of people in the United States in the late 1980s and 1990s through several studies by the National Academy of Engineering (NAE) on the relationship between engineering and ecological systems. Industrial ecology was also the subject of two Gordon Conferences in 1998 and 2000 at Colby-Sawyer College in New London, New Hampshire. The success of industrial ecology, along with the recommendations in Our Common Journey, a report prepared by the National Research Council Board on Sustainable Development (NRC, 1999), motivated NAE to organize a one-day meeting on ESE on October 24, 2000 (NAE, 2002). In that meeting, and in the exploratory workshop that preceded it, the following working definition of ESE was adopted: ESE is a multidisciplinary (engineering, science, social science, and governance) process of solution development that takes a holistic view of natural and human system interactions. The goal of ESE is to better understand complex, nonlinear systems of global importance and to develop the tools necessary to implement that understanding. ESE acknowledges that, so far, humans have demonstrated a limited understanding of the dynamic interactions between natural and human (non-natural) systems. This is partly attributable to the complexity of the problems at stake. On one hand, natural sys-tems are traditionally nonlinear, chaotic, and open dissipative systems characterized by interconnectedness and self-organization. Small changes in parts of natural systems can have a big impact on their response to disturbances. On the other hand, human (anthropogenic) systems are based on a more predictable Cartesian mindset. Understanding the relationship between natural and non-natural systems remains a challenge. We do not yet have the tools and metrics to comprehend and quantify complex systems and their interactions. According to Dietrich Dörner (1996), this is one of the many reasons technology often fails. Other reasons cited by Dörner include the slowness of human thinking in absorbing new material and human self-protection through control. According to Dörner: "We have been turned loose in the industrial age equipped with the brain of prehistoric times." In 2001, I co-organized a three-day workshop at the University of Colorado at Boulder on ESE sponsored by the National Science Foundation. The workshop brought together about 90 industry, government, and university participants from engineering, physical sciences, biological sciences, and social sciences. The overall goals of the workshop were: (1) to provide an intellectual framework for interdisciplinary exchange; (2) to make recommendations for changes to engineering education, research, and practice that would further the understanding of the interactions between natural and non-natural systems at multiple scales, from local to regional and global; and (3) to create a plan of action to implement the recommendations. More specifically, the workshop addressed the interactions of natural systems with the built environment. The workshop participants unanimously adopted the following definition of the "engineer of the future": The engineer of the future applies scientific analysis and holistic synthesis to develop sustainable solutions that integrate social, environmental, cultural, and economic systems. The workshop participants also recommended the adoption of a transformative model of engineering education and practice for the twenty-first century that (University of Colorado, 2001): unleashes the human mind and spirit for creativity and compassion expands engineers? professional and personal commitments to include both technical and nontechnical disciplines inspires engineers to embrace the principles of sustainable development, renewable resources management, appropriate technology, and systems thinking prepares engineers for social, economic, and environmental stewardships. Since 2001, ESE has been endorsed as a major initiative in the College of Engineering at the University of Colorado at Boulder. An example of the application of ESE to engineering for the developing world is presented below. Engineering for Developing Communities Engineering schools in the United States do not usually address the needs of the most destitute people on our planet, many of them living in industrialized countries (including the United States). This is unfortunate because the needs of the developing world for engineering solutions are likely to increase as population grows. How can engineers in the industrialized world contribute to the relief of the hunger, exploitation, injustice, and pain of people trying to survive day by day? How can they contribute to meeting the United Nations "Millennium Development Goals" (United Nations Development Programme, 2003; World Bank, 2003; World Federation of Engineering Organizations, 2002)? Clearly, we need to train a new generation of engineers to meet the challenges and needs of the developing world. The College of Engineering at the University of Colorado at Boulder has started a new program called the Engineering for Developing Communities (EDC) Program (edc-cu.org). The overall mission of the program is to educate globally responsible students who can offer sustainable, appropriate technology solutions to the endemic problems of developing communities worldwide (including the United States). The proposed interdisciplinary program, which involves both engineering and nonengineering disciplines, is offered to engineering students interested in community service and international development. The program is being developed in partnership with a wide range of academic and nonacademic groups in the United States and developing countries to address a wide range of issues, such as water provisioning and purification, sanitation, health, power production, shelter, site planning, infrastructure, food production and distribution, communication, and jobs and capital for developing communities, including villages, and refugee settlements. Finally, the three components of the program are: outreach and service; research and development; and education. Outreach and Service The outreach and service component of the EDC Program was launched in fall 2001 with a national initiative, Engineers Without Borders. This new activity was created as a follow-up to fieldwork in May 2001, when I took 10 undergraduate students from the Department of Civil, Environmental, and Architectural Engineering to help with the construction of a water distribution system for a small Mayan village in southern Belize. The work in Belize led to the creation of a nonprofit 501(c)(3) tax-exempt corporation, called Engineers Without BordersTM-USA (ewb-usa.org). The first chapter was formed at the University of Colorado at Boulder in late fall 2001. Three years later, EWB-USA has 74 student and professional chapters across the United States and involves 950 engineering students, faculty, and professional engineers. In general, the purposes of EWB-USA are (1) to help disadvantaged communities improve their quality of life through implementation of environmentally and economically sustainable engineering projects, and (2) to develop internationally responsible engineering students. Projects are initiated by, and completed with, contributions from the host communities, which are then trained to operate the systems without external assistance. The projects are carried out by groups of engineering students under the supervision of professional engineers and faculty. The students select a project and go through all phases of conceptual design, analysis, and construction during the school year; implementation is done during academic breaks and summer months. EWB-USA has about 50 projects in 22 different countries. In 2003 alone, more than 50 students from U.S. schools were involved in projects in Mali, Mauritania, Senegal, Thailand, Haiti, Belize, Nicaragua, Afghanistan, and Peru. The EWB-USA model of education goes beyond traditional service-learning concepts and models in engineering (Tsang, 2000). By involving students in all steps of the projects and through experiential learning, students become more aware of the social, economic, environmental, political, ethical, and cultural impacts of engineering projects. EWB-USA is a member of Engineers Without Borders-International (ewb-international.org), a network of like-minded humanitarian organizations that transcends national borders. As of April 2004, the EWB-International network includes 24 groups around the world. Research and Development The field work conducted by EWB-USA has revealed an urgent need for appropriate technologies specific to the developing world. An "appropriate technology" is usually characterized as small scale, energy efficient, environmentally sound, labor-intensive, and controlled by the local community. It must be simple enough to be maintained by the people who use it. In short, it must match the user and the need in complexity and scale and must be designed to foster self-reliance, cooperation, and responsibility (Hazeltine and Bull, 1999; Schumacher, 1989). Because appropriate technology is often perceived as "low tech" and unimportant, it is not usually addressed in engineering education or university research. Studies by the World Bank and the United Nations have shown, however, that appropriate technology is critical to bringing more than three billion people out of poverty. To respond to the need for research and development in appropriate technology, a Center for Appropriate and Sustainable Technology (CU-CAST) is under development in the College of Engineering at the University of Colorado at Boulder. The center has three goals: (1) to provide a university research environment where teams of undergraduate and graduate students can work under the supervision of faculty and professional engineers; (2) to foster the innovation, development, and testing of technologies that can be used to address water, sanitation, energy, shelter, and health issues in the developing world; and (3) to provide services in database development and maintenance; the testing and improvement of existing technologies; technology transfer; and education and training. Examples of ongoing studies by students and faculty include: prototype rope pumps for water wells and ram pumps; pesticide removal during basic treatment of drinking water; attenuation of pathogens from latrines to nearby water sources; phytoremediation affects on wastewater treatment; thin-shell acrylic concrete roofing; solar pasteurization, cooling, heating, cooking, and pumping; production of biofuel and biomass; and earthenware cooling techniques for storage of food and vaccines. Education The EDC Program brings together courses in engineering, sustainability, appropriate technology, renewable energy, international education and development, business, and various fields of humanities and provides an opportunity for undergraduate students in engineering to enroll in a regular program of study in the College of Engineering and, at the same time, take some of their socio-humanities electives, technical electives, and independent study classes in courses emphasizing engineering for developing communities. The success of EWB convinced me that we need new engineering courses to provide students with better tools and skills for work in the developing world. In spring 2002, I introduced Sustainability and the Built Environment, a three-credit course for undergraduate and graduate students that presents the fundamental concepts of sustainability and sustainable development, with the emphasis on understanding natural systems, interactions between the built environment and natural systems, and the technical and nontechnical issues that influence engineering decisions. (Information about this course can be found at ceae.colorado.edu/~amadei/CVEN4838.) In fall 2002, I introduced a design course for undergraduates (engineering freshmen) that emphasizes appropriate technology. Since 2002, the course has been offered twice through the Integrated Teaching and Learning Laboratory (itll.colorado.edu). The course gives students a thorough understanding of some of the most common and important technologies being introduced in small-scale community developments. Students are asked to create, design, and construct appropriate technological systems, processes, and devices for a variety of settings associated with the developing world. Examples include: production of biodiesel; production of biomass from bananas; generation of electricity using water turbines; heating of water for refugee camps; water filtration systems; solar-powered refrigeration; and solar-powered water pumping. (Information about these projects can be found at edc-cu.org/geen1400.htm.) The educational component of the EDC Program also includes continuing education and training for U.S. engineers and foreign personnel in international development and capacity building. The EDC Program sponsors and organizes workshops and conferences, bringing world experts and leaders to the University of Colorado at Boulder for discussions and sharing of research and applications in areas dealing with the developing world. For instance, last year, the EDC Program co-organized Sustainable Resources 2003: Solutions to World Poverty, which was attended by about 800 participants from 44 different countries. (Information about that conference and the forthcoming Sustainable Resources 2004 conference can be found at sustainableresources.org.) Conclusions Creating a sustainable world that provides a safe, secure, healthy, productive, and sustainable life for all peoples should be a priority for the engineering profession. Engineers have an obligation to meet the basic needs of all humans for water, sanitation, food, health, and energy, as well as to protect cultural and natural diversity. Improving the lives of the five billion people whose main concern is staying alive each day is no longer an option; it is an obligation. Educating engineers to become facilitators of sustainable development, appropriate technology, and social and economic changes represents one of the greatest challenges faced by the engineering profession today. Meeting that challenge may provide a unique opportunity for renewing the leadership of the U.S. engineering profession as we enter the twenty-first century. The EDC Program described in this paper provides a unique opportunity to promote engineering, a discipline that has traditionally been taken for granted by government agencies and political groups. It also provides higher visibility to a profession that will certainly play a critical role in creating structures and technologies to sustain a decent quality of life for current and future generations, especially in the developing world. The new program offers many opportunities for practicing engineers to become involved in engineering education through projects in developing communities around the world (including the United States). Finally, it provides an innovative way to educate young engineers interested in addressing the problems of developing countries and communities. It is clear that engineers of the twenty-first century are called upon to make critical contributions to peace and security in our increasingly challenged world.
Posted on: Tue, 23 Jul 2013 17:06:53 +0000

Trending Topics



px;">
These cowgirl fans are a trip talkin bout they didnt get away with
youtube/watch?v=A4duZjxusGM Lyrics: All alone now Except

Recently Viewed Topics




© 2015