Effects of Cell Phone Radiofrequency Signal Exposure on Brain - TopicsExpress



          

Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism ARTICLE Article Figures Tables References ABSTRACT ABSTRACT | METHODS | RESULTS | CONCLUSIONS | ARTICLE INFORMATION | REFERENCES Context The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. Objective To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Design, Setting, and Participants Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with (18F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes (“on” condition) and once with both cell phones deactivated (“off” condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm3) and P < .05 (corrected for multiple comparisons) were considered significant. Main Outcome Measure Brain glucose metabolism computed as absolute metabolism (μmol/100 g per minute) and as normalized metabolism (region/whole brain). Results Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 μmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). Conclusions In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance. The dramatic worldwide increase in use of cellular telephones has prompted concerns regarding potential harmful effects of exposure to radiofrequency-modulated electromagnetic fields (RF-EMFs). Of particular concern has been the potential carcinogenic effects from the RF-EMF emissions of cell phones. However, epidemiologic studies of the association between cell phone use and prevalence of brain tumors have been inconsistent (some, but not all, studies showed increased risk), and the issue remains unresolved.1 RF-EMFs emitted by cell phones are absorbed in the brain2 within a range that could influence neuronal activity.3 Although the intensity of RF-EMFs is very low, the oscillatory frequencies correspond to some of the oscillation frequencies recorded in neuronal tissue and could interfere with neuronal activity.4 Thermal effects from RF-EMFs have also been invoked as a mechanism that could affect neuronal activity, although temperature changes produced by current cell phone technology are likely minimal.5 Studies performed in humans to investigate the effects of RF-EMF exposures from cell phones have yielded variable results.6 For example, imaging studies that used positron emission tomography (PET) to measure changes in cerebral blood flow (CBF) with RF-EMF exposures from cell phones have reported increases,7,8 decreases and increases,9,10 or no changes11 in CBF. The discrepancies among these imaging studies likely reflect their relatively small sample sizes (9-14 participants), and the potential confounding of CBF measures reflecting vascular rather than neuronal signals.12- 14 This highlights the need for studies to document whether RF-EMFs from cell phone use affects brain function in humans. The objective of this study was to assess if acute cell phone exposure affected regional activity in the human brain. For this purpose we evaluated the effects in healthy participants (N = 47) of acute cell phone exposures on brain glucose metabolism, measured using PET with injection of (18F)fluorodeoxyglucose (18FDG). Brain glucose metabolic activity is a more proximal marker of neuronal activity than measures of CBF, which reflects vascular as well as neuronal components.15 Also, because brain glucose metabolic measures obtained with 18FDG reflect the averaged brain activity occurring over a 30-minute period,16 this method allowed assessment of the cumulative effects of cell phone exposure on resting brain metabolism. Because exposure to RF-EMFs from cell phones is well localized and is highest in brain regions closest to the antenna,2 we hypothesized that the effects on brain metabolism would be greatest in inferior and anterior brain regions, the regions that would be exposed to the highest RF-EMF amplitude for the cell phone model used in this study.
Posted on: Tue, 18 Mar 2014 09:33:03 +0000

Trending Topics



Recently Viewed Topics




© 2015