I like this model of emotions, from Cosmides & Toobys Evolutionary - TopicsExpress



          

I like this model of emotions, from Cosmides & Toobys Evolutionary Psychology and the Emotions: > An evolutionary perspective leads one to view the mind as a crowded zoo of evolved, domain-specific programs. Each is functionally specialized for solving a different adaptive problem that arose during hominid evolutionary history, such as face recognition, foraging, mate choice, heart rate regulation, sleep management, or predator vigilance, and each is activated by a different set of cues from the environment. But the existence of all these microprograms itself creates an adaptive problem: Programs that are individually designed to solve specific adaptive problems could, if simultaneously activated, deliver outputs that conflict with one another, interfering with or nullifying each others functional products. For example, sleep and flight from a predator require mutually inconsistent actions, computations, and physiological states. It is difficult to sleep when your heart and mind are racing with fear, and this is no accident: disastrous consequences would ensue if proprioceptive cues were activating sleep programs at the same time that the sight of a stalking lion was activating ones designed for predator evasion. To avoid such consequences, the mind must be equipped with superordinate programs that override some programs when others are activated (e.g., a program that deactivates sleep programs when predator evasion subroutines are activated). Furthermore, many adaptive problems are best solved by the simultaneous activation of many different components of the cognitive architecture, such that each component assumes one of several alternative states (e.g., predator avoidance may require simultaneous shifts in both heart rate and auditory acuity; see below). Again, a superordinate program is needed that coordinates these components, snapping each into the right configuration at the right time. > Emotions are such programs. To behave functionally according to evolutionary standards, the minds many subprograms need to be orchestrated so that their joint product at any given time is functionally coordinated, rather than cacophonous and self-defeating. This coordination is accomplished by a set of superordinate programs - the emotions. They are adaptations that have arisen in response to the adaptive problem of mechanism orchestration (Tooby & Cosmides, 1990a; Tooby, 1985). [...] > According to this theoretical framework, an emotion is a superordinate program whose function is to direct the activities and interactions of the subprograms governing perception; attention; inference; learning; memory; goal choice; motivational priorities; categorization and conceptual frameworks; physiological reactions (such as heart rate, endocrine function, immune function, gamete release); reflexes; behavioral decision rules; motor systems; communication processes; energy level and effort allocation; affective coloration of events and stimuli; recalibration of probability estimates, situation assessments, values, and regulatory variables (e.g., self-esteem, estimations of relative formidability, relative value of alternative goal states, efficacy discount rate); and so on. An emotion is not reducible to any one category of effects, such as effects on physiology, behavioral inclinations, cognitive appraisals, or feeling states, because it involves evolved instructions for all of them together, as well as other mechanisms distributed throughout the human mental and physical architecture. [...] > Consider the following example. The ancestrally recurrent situation is being alone at night and a situation-detector circuit perceives cues that indicate the possible presence of a human or animal predator. The emotion mode is a fear of being stalked. (In this conceptualization of emotion, there might be several distinct emotion modes that are lumped together under the folk category fear, but that are computationally and empirically distinguishable by the different constellation of programs each entrains.) When the situation detector signals that one has entered the situation possible stalking and ambush, the following kinds of mental programs are entrained or modified: > (1) There are shifts in perception and attention: You may suddenly hear with far greater clarity sounds that bear on the hypothesis that you are being stalked, but that ordinarily you would not perceive or attend to, such as creaks or rustling. Are the creaks footsteps? Is the rustling caused by something moving stealthily through the bushes? Signal detection thresholds shift: Less evidence is required before you respond as if there were a threat, and more true positives will be perceived at the cost of a higher rate of false alarms. > (2) Goals and motivational weightings change: Safety becomes a far higher priority. Other goals and the computational systems that subserve them are deactivated: You are no longer hungry; you cease to think about how to charm a potential mate; practicing a new skill no longer seems rewarding. Your planning focus narrows to the present: worries about yesterday and tomorrow temporarily vanish. Hunger, thirst, and pain are suppressed. > (3) Information-gathering programs are redirected: Where is my baby? Where are others who can protect me? Is there somewhere I can go where I can see and hear what is going on better? > (4) Conceptual frames shift, with the automatic imposition of categories such as dangerous or safe. Walking a familiar and usually comfortable route may now be mentally tagged as dangerous. Odd places that you normally would not occupy - a hallway closet, the branches of a tree - suddenly may become salient as instances of the category safe or hiding place. > (5) Memory processes are directed to new retrieval tasks: Where was that tree I climbed before? Did my adversary and his friend look at me furtively the last time I saw them? > (6) Communication processes change: Depending on the circumstances, decision rules might cause you to emit an alarm cry, or be paralyzed and unable to speak. Your face may automatically assume a species-typical fear expression. > (7) Specialized inference systems are activated: Information about a lions trajectory or eye direction might be fed into systems for inferring whether the lion saw you. If the inference is yes, then a program automatically infers that the lion knows where you are; if no, then the lion does not know where you are (the seeing-is-knowing circuit identified by Baron-Cohen 1995, and inactive in autistics). This variable may automatically govern whether you freeze in terror or bolt. Are there cues in the lions behavior that indicate whether it has eaten recently, and so is unlikely to be predatory in the near future? (Savanna ungulates, such as zebras and wildebeests, commonly make this kind of judgment; Marks, 1987). > (8) Specialized learning systems are activated, as the large literature on fear conditioning indicates (e.g., LeDoux, 1995; Mineka & Cook, 1993; Pitman & Orr, 1995). If the threat is real, and the ambush occurs, the victim may experience an amygdala-mediated recalibration (as in post-traumatic stress disorder) that can last for the remainder of his or her life (Pitman & Orr, 1995). > (9) Physiology changes: Gastric mucosa turn white as blood leaves the digestive tract (another concomitant of motivational priorities changing from feeding to safety); adrenalin spikes; heart rate may go up or down (depending on whether the situation calls for flight or immobility), blood rushes to the periphery, and so on (Cannon, 1929; Tomaka, Blascovich, Kibler, & Ernst, 1997); instructions to the musculature (face, and elsewhere) are sent (Ekman, 1982). Indeed, the nature of the physiological response can depend in detailed ways on the nature of the threat and the best response option (Marks, 1987). > (10) Behavioral decision rules are activated: Depending on the nature of the potential threat, different courses of action will be potentiated: hiding, flight, self-defense, or even tonic immobility (the latter is a common response to actual attacks, both in other animals and in humans). Some of these responses may be experienced as automatic or involuntary. xa.yimg/kq/groups/19459303/357071145/name/Evolutionary+Psychology+and+the+Emotions.pdf
Posted on: Fri, 23 Jan 2015 00:38:56 +0000

Trending Topics



Recently Viewed Topics




© 2015