In the minds of these authors, any near-term application of their - TopicsExpress



          

In the minds of these authors, any near-term application of their ideas would probably be to hadrons, perhaps specifically Sakurai’s theory of hadrons, which in 1960 predicted the “rho mesons”, which are photon-like hadrons with mass, and had been discovered in 1961. Anderson, Brout-Englert and Higgs specifically mention hadrons at certain moments. But none of them actually considered the real hadrons of nature, as they were just trying to make points of principle; and in any case, the ideas that they developed did not apply to hadrons at all. (Well, actually, that’s not quite true, but the connection is too roundabout to discuss here.) Sakurai’s ideas had an element of truth, but fundamentally led to a dead end. The rho mesons get their mass in another way. Meanwhile, none of these people wrote down anything resembling the Higgs field which we know today — the one that is crucial for our very existence — so they certainly didn’t directly predict the Higgs particle that was discovered in 2012. It was Steven Weinberg (NP1979) in 1967, and Abdus Salam (NP1979) in 1968, who did that. (And it was Weinberg who stuck Higgs’ name on the field and particle, so that everyone else was forgotten.) These giants combined the ideas of Higgs and the others about how to give mass to photon-like particles using a Higgs-type field, with its Higgs-type particle as a consequence… …with the 1960 work of Sheldon Glashow (NP1979), Schwinger’s student, who like Schwinger proposed the weak nuclear force was due to photon-like particles with mass,… …and with the 1960-1961 work of Murray Gell-Man (NP1969) and Maurice Levy and of Yoichiro Nambu (NP2008) and Giovanni Jona-Lasinio, who showed how proton-like or electron-like particles could get mass from what we’d now call Higgs-type fields. This combination gave the first modern quantum field theory of particle physics: a set of equations that describe the weak nuclear and electromagnetic forces, and show how the Higgs field can give the W and Z particles and the electron their masses. It is the primitive core of what today we call the Standard Model of particle physics. Not that anyone took this theory seriously, even Weinberg. Most people thought quantum field theories of this type were mathematically inconsistent — until in 1971 Gerard ‘t Hooft (NP1999) proved they were consistent after all.
Posted on: Tue, 08 Oct 2013 22:52:29 +0000

Trending Topics



Recently Viewed Topics




© 2015