Massive Tailing Ponds, Lakes of Poisoned Water While it appears - TopicsExpress



          

Massive Tailing Ponds, Lakes of Poisoned Water While it appears to be a simple matter of lather-rinse-repeat, the sheer volume of water required by the process makes it environmentally problematic. Though the Canadian Association of Petroleum Producers asserts the totality tailing ponds in tar sands covers just 67 square miles, the Sierra Clubs Colarulli counters that they are large enough to be seen from space. Others who have witnessed the tailing ponds firsthand say that they are anything but a pleasant experience. I went up to Fort McMurray [Alberta, where tar sands production is centered] in 2007 and saw firsthand the tar sands facilities. I got to tour of one of the largest ones, Suncor, not from management but from the union representing the workers at the facility, says Slocum. We went to the edge of one of the large retaining ponds for the tailings waste. The area that I was standing at extended beyond the horizon. Its like standing on the edge of the ocean, except this was not an ocean, this was a contaminated body of water that was the legacy of a generation of tar sands production at just one facility. In addition to being extremely large, the tailing ponds are also extremely difficult to manage. Albertas Energy Resources Conservation Board has called out tar sands producers for failing to meet goals to reduce the proliferation of tailings ponds. The total of tailing pond capacity in Alberta is presently 925 million cubic meters, up from 725 million cubic meters four years ago. The Canadian environmental research firm Pembina Institute has even more alarming information regarding tailings. Their research finds that tailings contain contaminants like naphthenic acids, hydrocarbons, phenol compounds, ammonium, mercury, and other trace metals. The National Pollutant Release Inventory report for 2010 found contaminants in staggering quantities: arsenic, 300,905 kilograms (kg); benzene, 178,200 kg; lead, 756,793 kg; mercury 824 kg; and toluene, 1,169,000 kg. (1 kilogram is equal to 2.2 pounds.) The tailing ponds are so toxic, producers are required to use cannons, flare guns, and other alarms to scare away wildlife that might approach the tailings pond. However, sometimes those measures are not enough or fail to function. The resulting failure leads to the deaths of thousands of animals, particularly ducks and other waterfowl. Even absent the problem of toxic tailings, tar sands production causes severe water usage problems. Pembina notes that almost none of the water use in tar sands processing is returned to the natural water cycle. This is particularly striking because so much water is used, approximately three barrels of water for every barrel of oil produced. With nearly as much water being used by tar sands producers as the residential usage of 1.7 million Canadians, the Athabasca River, which supplies the water used in tar sands production, is suffering. As the Athabasca is a habitat for many of Albertas native fish species, the fact that tar sands producers are licensed to withdraw and use 15% of the rivers water flow could have calamitous impact on the rivers ecosystem as well as the First Nations, anglers, hunters and tourism industry who rely on the fish and wildlife. Transporting Bitumen Once the bitumen is separated from the solid matter and water, it must be prepared for transport. This involves mixing the bitumen, which is about the consistency of peanut butter in its unaltered state, with lighter oils and solvents. Though the particular cocktail of substances used to dilute bitumen, commonly known as diluents, are considered proprietary company information, it is widely known that they generally include the carcinogen benzene. Without this processing, the bitumen would be simply too thick to move. The resulting product, diluted bitumen, or dilbit, is roughly the same consistency as conventional crude, allowing it to be pumped and shipped in similar ways. The sheer volume of petroleum products produced from the Alberta tar sands leaves few options for shipping them from their land-locked location. The number of trucks required to ship enormous volumes of oil, not to mention the inherent danger with driving them over tens of thousands of miles of crowded roadway, makes them completely unfeasible. That leaves rail and pipeline as the only viable options. Canadian railroad company CN, not surprisingly, advocates for using rail to transport the product from tar sands producers to refineries. It asserts that using trains to move the product is actually less carbon intensive than the KXL project would be. Transporting oil by rail has surged in popularity in the US in light of the fact that current US oil production exceeds the capacity of existing pipelines. And while shipping by pipeline is less expensive than shipping by rail, rail offers a much wider array of delivery options, allowing producers to send their product where they can get the most return rather than limiting them to just those refineries at the end of the pipeline. However, transportation by rail has its own, often spectacular dangers. Lives Lost Nowhere is that danger more obvious than in the eastern province of Québec. On July 6, 2013, a freight train hauling oil derailed in the town of Lac-Megantic. The cargo exploded and burned, killing 47 people in Canadas worst rail accident in over a century. In addition to the loss of life and the homes and businesses destroyed by the explosion and fire, environmental groups -- and the railway operator itself -- say that cleaning up the toxic mess left behind probably will exceed $200 million. The Canadian ambassador to the U.S. has used the prospect of more trains carrying oil across the country as an incentive for President Obama to approve Keystone XL, saying that, one way or another the oil will make its way to market. In light of the Lac-Megantic tragedy, the ambassadors words bear more than a hint of threat. Despite the dangers and expense of delivering oil by rail, the U.S. railways are doing brisk business in the market. Between 2009 and 2011, the Union Pacific railroad saw its annual oil-transporting traffic increase sevenfold to 37,000 carloads, each totaling 725 barrels. The Quebec accident, however, could put a damper on Americans enthusiasm for trains hauling oil through their communities. Rivers of Spills Given the costs and hazards of transportation by rail, transporting tar sands oil by pipeline seems the more reasonable solution. They clearly have shown that they are feasible and effective, and the Association of Oil Pipelines says that from 2006 to 2008 there were only 0.7 safety incidents per thousand miles of pipeline. But with 55,000 miles of petroleum pipelines crisscrossing the country, that still amounts to 38 pipeline spills in a three-year period, or roughly one a month. And each one is worse than a railway spill. The inability of pipeline alarm systems to quickly recognize a leak and alert pipeline operators makes every leak a potential, if not actual, disaster. Industry leak detection systems missed 19 of 20 spills, says NRDCs Swift. And whats more concerning is, if you look at the data over the last 10 years, four out of five spills have been greater than 40,000 gallons. The Wall Street Journal reports that the technology pipeline operators rely upon to learn about little problems before they become big problems are highly unreliable. The robots, called smart pigs, that snake their way through the pipelines looking for fissures in the pipes have problems spotting them, according to the report (subscription required). Case in point: an ExxonMobil pipeline reportedly was scanned just a month before a 5,000-barrel spill caused by cracks in the pipe. In sum, the high-tech gizmos that are supposed to keep oil out of groundwater just dont work very well. More troubling, it appears that construction already underway on the pipeline could be something less than faultless. Activists who locked themselves inside the pipeline under construction in Texas claim they found pinholes of light leaking through poorly welded seams in the pipe, and they produced photographs as proof. Public Citizen reports dozens of problems, including dents and welds, with segments of KXL pipeline already laid in southern Texas. These findings bolster claims by a former TransCanada engineer who was fired by the company after reporting faulty welding practices to Canadian regulators. KXL could be following in the footsteps of its predecessor, Keystone Phase I, which is already operational. TransCanada assured that it would leak once in seven years (as if that were an acceptable level of contamination), but as this DeSmogBlog reports, it sprung 12 leaks in its first year, spilling as little as a few gallons and as much as 500 barrels. The Mighty Ogallala Aquifer That kind of risk becomes even more enormous when one considers that the proposed KXL route would extend from the Canadian border in Montana to the Gulf Coast at Port Arthur Texas. Although the pipelines exact route is unknown to anybody other than TransCanada, its certain that the pipeline would cross some of the most important farmland and ranch land in the country. In addition to that, it would cross one of the most vital freshwater sources in the country, the Ogallala aquifer. The Ogallala aquifer contains about fifth of the United States freshwater supply. It runs through eight states, from South Dakota and Wyoming in the north to New Mexico and Texas at its southern end. Approximately 8,000,000 people rely on it for fresh drinking water, along with untold numbers of farms and cattle ranches. That is such a scary question, says Kevin Zeese, co-director of Its Our Economy. What would happen if Keystone XL ruptured in the Ogallala aquifer? Thats one of those areas where right now we do not have the data. Those are exactly the types of questions we need to be asking before we decide whether or not to permit the Keystone XL pipeline. When you think about that oil spreading, even in small amounts, through the freshwater that underpins our agricultural economy, what would happen if those goods were then distributed around the country and around the world? Its really, really scary to think about those toxins and how far they could go. With so much at risk, farmers and ranchers in the breadbasket of America have become environmental activists unlike any you might recognize. According to the State Departments own information, a pinhole leak could release an amount of benzene that could contaminate enough water for 2 million people to drink for up to 425 days, said Ben Gotschall, district president of the Nebraska Farmers Union, at a public hearing. There has not been a worst-case scenario analysis on the Ogallala aquifer, the Platte River, the Niobrara River, the countless family wells, said Jane Kleeb of Bold Nebraska, a grassroots organization opposed to KXL, at the same public hearing. For family farmers, the worst-case scenario is not merely contaminated water, though that is certainly a crisis of epic proportions. A much greater risk for farmers is losing everything they have. Their property will have less value when a spill happens. This is at glance. Just like those folks in Arkansas, we cant sell our land, sell the home back to Exxon. We cant just sell our home back to TransCanada. This is land thats been in families hands for over 100 years, Kleeb said. Have You Heard of the Mayflower (Disaster)? The Arkansas families Kleeb referenced are the test case for what happens when an oil pipeline ruptures. On March 29, 2013, and ExxonMobil pipeline had what the Environmental Protection Agency classified as a major spill. Twenty-two homes had to be evacuated in the town of Mayflower, located about 25 miles northwest of Little Rock, to protect their inhabitants from hundreds of thousands of gallons of tar sands oil gushing through their neighborhood. Even after the EPA declared the air quality safe enough for families to return, very few have taken that step. In fact, a cursory check of a real estate listing site shows dozens of homes listed for sale in Mayflower, most clustered around the now-polluted Lake Conway. Perhaps more disturbing, records indicate that ExxonMobil was aware that the pipeline had problems that made it highly susceptible to rupture. And yet, the company added stresses to the pipeline that made rupture even more likely. That and many other indignities, not to mention violations of state and federal law, prompted the state of Arkansas and the federal government to sue ExxonMobil. Among the claims in the suit, the state asserts that the cleanup of the spill site consisted of removing petroleum soaked mud, word, concrete, and other debris and storing it in an uncontrolled, unpermitted site. The spill disrupted lives and damaged our environment. It sullied our previously pristine water and our clean air, said Arkansas Attorney General Dustin McDaniel. As the party responsible for this incident, Exxon is also responsible for the penalties imposed by the state for the damage to our environment, and the company should foot the bill for the states cleanup costs. Never Forget the Kalamazoo If the experience of Michigan residents near the Kalamazoo River is any indication, lives likely will be disrupted for years, and cleanup costs could grow into the billions. The Kalamazoo River has been fouled with tar sands oil for more than three years following the rupture of a 30-inch diameter crude oil pipeline. More than 800,000 gallons of the sticky, black sludge spilled into the river near the town of Marshall, Michigan, on July 25, 2010. The National Transportation Safety Board found that Canadian pipeline company Enbridge, which owned and operated the pipeline that ruptured, ignored evidence of cracks, and that its engineers ignored the leak detection systems alarms for 17 hours until an outside caller informed them their pipe was hemorrhaging oil. Since then, Enbridge has spent more than $1 billion trying to clean up the mess from roughly 40 miles of the river. Sadly, the cleanup still goes on, with dredging operations underway to remove contaminants from the rivers bed. These spills were catastrophic for the local communities, says Stockman of Oil Change International. The Michigan spill in particular proved to be the most expensive spill in US history, on a per-barrel basis. The cost of cleaning up each barrel was more than in any other case, even the Deepwater Horizon [the BP-owned offshore oil drilling platform that exploded in the Gulf of Mexico in April 2010]. Tar Sands Exempt from Oil Spill Insurance Fund; Taxpayers at Risk With costs for cleaning up spills so staggeringly high, one might reasonably assume that oil pipeline operators have insurance of some sort to cover costs they cannot afford to pay. And it is true; pipeline operators pay a few cents per barrel into the Oil Spill Liability Trust Fund to defray cleanup costs. And given that dilbit is so much more difficult clean up, since its density causes it to separate and sink in water rather than float on the surface, one might reasonably assume that tar sands pipeline operators would be required to pay a little bit more. However, one would be wrong. They are, in fact, not required to pay into the fund at all. Thanks to an interpretation of the law creating the liability fund by the Internal Revenue Service, bitumen is exempted because it is not conventional oil. Regardless of who pays for it, the notion of cleaning up of an oil spill is essentially delusional. Whether its the BP oil disaster or the Kalamazoo spill or what happened up in Alaska 20 years ago [the Exxon Valdez spill], it takes decades and decades for that ecosystem to recover, if it ever does, says Colarulli. Experts who work on those types of spills and disasters will tell you it never recovers. Long-term effects generally arent felt until 10 or 20 years later when the buildup of toxins in the lower organisms in the soil start to collect in larger animals, such as humans. The potential risk, Colarulli says, cannot be overstated: This is a 1700-mile Superfund site that were talking about. There are conflicting opinions as to whether dilbit is more or less likely to cause pipeline ruptures. The National Academy of Sciences National Research Council reported that dill bit is no more likely than conventional oil to cause damaged pipelines. However, as Swift wrote in his NRDC blog, The NAS literature review compared tar sands to similar heavy thick crudes coming from Canada that have similar properties and risks, rather than comparing them to the lighter oils historically transported in the US pipeline system. So the NAS review found that tar sands oil behaves very much like oil thats very much like tar sands oil. Catastrophic as they may be, spills are an unintended consequence of tar sands development. Another major environmental hazard from the process is expected, and in some quarters, desirable. Not a Drink: Pet Coke and the Kochs Petroleum coke, or pet coke, is a byproduct of the refining process. As a cheap substitute for coal, it can be used to fuel power plants. But with tar sands higher contaminant content, and the fact that more than 6 million tons of it are produced annually, pet coke is another environmental catastrophe waiting to happen. The catastrophe occurs not only when the pet coke is burned, spewing massive amounts of carbon, sulfur, and other pollutants, but as weve seen in Detroit, when it is stored and stockpiled. Our Windsor neighbors, some folk started calling me. And the media called the same day, recalls Rashid Tlaib, the Michigan State Representative who represents the Detroit neighborhoods that abut the Detroit River and border the Canadian city of Windsor, Ontario. They are asking me, Whats with these black piles? I said, What black piles? At that time those piles were about 15 feet tall; now [in July 2013] theyre all over 45 feet. Those black piles were petroleum coke, and from the time they first appeared shortly after the nearby Marathon Petroleum oil refinery began processing about 28,000 barrels of tar sands oil daily in November 2012, they eventually comprised a mound three stories tall and stretching for an entire city block. Shockingly, the pile was almost entirely uncontrolled, i.e., little if anything was done to control for wind and water runoff. In fact, the company that stockpiled the pet coke never even got permits to store it. They never applied for any processes, nothing, says Tlaib. Theres a fire permit they ended up having to do, and they did that. But other than that they [had] no permits. One of the things Im curious about is why they didnt hire an environmental consultant, so be that understands this process, understands the mitigations that you have to put in place, understands how to deal with products like petroleum coke that are extremely dangerous when you dont contain them properly. Instead, they hired a PR consultant, so that tells you they would spend the money on a PR consultant versus trying to protect the public health and environment of the people who have to live with their piles. The problem is that we dont have existing regulations in place. Its almost like a free-for-all in many places of our country for these oil companies, says the Sierra Clubs Colarulli, pointing out that the law has yet to catch up to the technology that brought tar sands oil to refineries in Detroit and elsewhere. The first thing we need to do is identify when its happening and call it to light. Pet coke piles like in Detroit are actually [being stored] around the country. They are the most toxic substances out there that are not being regulated. There are better standards around how you or I distribute our garbage than how the Koch brothers have to handle their pet coke. With no government regulators to take up the task, Tlaibs constituents, generally low-income people of color, took it upon themselves to document the damage the pet coke was doing to their community. We confirmed that the petroleum coke was on the sidewalk, and on peoples windowsills that live nearby. We have 767 people who got their homes tested, and all can confirm petroleum coke containing two metals, selenium and vanadium, that can cause serious respiratory disease, Tlaib says. Neighbors took to the streets, but their protests generally were met with indifference from the city government. Perhaps it is because they are mostly poor and minority residents who are frequently marginalized by the political process. Or, maybe its because the coke piles are owned by Koch Carbon, which is owned by the extremely rich, extremely powerful Koch brothers. (The industrialist billionaire brothers are well-known in the political world for their advocating extreme right wing, free-market libertarianism, and their financial support of organizations and legislators striving to make their ideals into law. More on that later.) But whatever the reason, the city did not take action to shut down the coke piles, despite evidence that rainfall runoff from them was getting into the Great Lakes watershed, and toxic dust was contaminating the neighborhood. Until, that is, July 27, 2013, when disturbing video evidence showed a massive plume of pet coke dust rising over the Detroit River and hovering over Canadian territory in Windsor. The video was shot by Randy Emerson, a member of the Canadian environmental group Windsor on Watch. He uploaded the video to YouTube, where it quickly went viral. Within a months time, Detroit Mayor Dave Bing ordered that the piles must be removed by August 27, and covered until removal was complete. By that time, however, Koch Carbon had already announced its intention to move the piles to Ohio. Some pet coke has now turned up at a Koch Industries site in Chicago. The Plight of Port Arthur The pet coke pile in Detroit was the result of a short-term production in one relatively small refinery. What will happen when full-scale refining takes place at the end of a pipeline delivering nearly 30 times the amount? The people of Port Arthur, Texas, are not eager to find out; the oil industry has already given them enough problems. I heard a statistic once that that if you lived within one mile of the ports you had an 82-percent increased rate of contracting leukemia, says Colarulli. Those sorts of stats are everyday life for people that live near an oil refinery like the citizens of Port Arthur. Port Arthur stands at the most southeastern point of Texas, bordered by Louisiana and the Gulf of Mexico. Part of the Golden Triangle outside of Houston, its history as a refining center dates back more than a century, originating in 1901 with the Spindletop oil well in nearby Beaumont. Since then, its landscape has been dotted with refineries. From some parts of town, its possible the look out on the horizon and see nothing but oil refineries, including one of the worlds largest. Not coincidentally, Port Arthurs population suffers from shockingly high rates of cancer, asthma, kidney and liver disease, and other maladies attributable to the toxins in the air that they breathe. Its a disproportionate number of people suffering from illnesses. Their respiratory systems are damaged, and also we have some serious skin disorders. Throughout this community, within a one block area theres been at least three deaths from cancer, and any community you go into within the city of Port Arthur, you can bet if the residence that were once living there passed on, it was probably cancer related, says Hilton Kelley, a community leader and 2011 winner of the prestigious Goldman Prize (often called the Nobel Prize for environmentalists), naming him as the outstanding environmental activist in North America. Kelley was born and raised in Port Arthur, but left as a young man to join the U.S. Navy, and then went to Hollywood to pursue his acting dream. Despite a successful career, including work on the Don Johnson series Nash Bridges, he was compelled to return to his blighted, impoverished hometown. I came here [to Port Arthur] to visit in 2000, and just took a look around the community. I was wondering why wasnt somebody doing something to help rebuild this area, to help clean it up. And when I got back on the California I kept thinking about my hometown and the need for someone to help clean it up. And I just made a choice to come back to make that happen, he says. Since his return, Kelley has created the non-profit Community In-power & Development Association. And in seeking to clean up and revitalize the city, he has become something of a lay expert on the petrochemical industry and what it does to human health. With all these chemicals being dumped into the air like sulfur dioxide, 1,3-butadiene, volatile organic compounds, carbon monoxide, all these chemicals in the air that we breathe, Kelley rattles off the top of his head. We know how sulfur dioxide impacts us by itself, we know how benzene affects us standing alone. But all these chemicals mixed together, how does that impact our bodies? What is it doing to our mental state? What is it doing to our respiratory system? We dont know yet. We dont know. Kelley often hears critics say about the residence of Port Arthur, if its so bad why dont they just leave? But the fact is, he says, the people who remain in Port Arthur are generally the poorest of the poor. With 25% of the citys population living below the poverty line and nearly one-fifth unemployed (bearing in mind the official unemployment rate only counts those who are out of work and are actively seeking employment, excluding the chronically unemployed and part-time workers who would prefer full-time employment), seven out of 10 homes worth less than $50,000, the evidence supports Kelleys position. Economically, this community is very stressed. We have 16-, 17-percent unemployment. Those people that are employed, they are working two or three mediocre jobs fighting to keep the lights on because a lot of the jobs are paying $7.75. Why dont you move, you say? Because this is the cheapest place to live. They cant afford to move. Theyre stuck, Kelley says. As a result, those who are stuck suffer long-term impacts to their health. With no respite from the pollution in the air, Port Arthur residents dont spend too much time outside. One can drive around the town for hours and not encounter enough people to play a game of pickup basketball. Playing outside is kind of dangerous because of the emission levels, Kelley says. When kids play, they breathe deeper, and the respiratory system is sucking in more particles from the air. This can be dangerous because on any given day the plants can have an emission event and released tons of toxins that our kids are breathing in. In many cases, the kids have to take a breathing device with them. Its a pump you have to plug in and put in a little tube, and it creates a mist. The child has to put on a mask, and it opens up the bronchial tubes. One out of every five households has a child that has to use this type of medication. For Kelley, this work isnt purely altruistic. He has his own health problems related the environment, including chronic respiratory troubles and recurring rashes. And he speaks frequently of family members who have suffered and continue to suffer. From a cousin who died of a brain tumor as a child to another with lifelong breathing problems, not to mention uncountable friends and classmates who have died of cancer, lung disease, liver disease, and a litany of other diseases linked to petrochemicals, Kelley takes his work very personally. But he strives not to let his emotions interfere with what he needs to accomplish. It angers you, but what can you do besides protest? he asks. What else can you do besides write letters to congressmen and try to get them onboard, most of the time to no avail? What can you do besides call these folks and let them know that theres an issue? Were doing everything we possibly can to help protect the citizens from these dangerous chemicals, and all were doing seems to be not enough. Tell the State Department what you think about Keystone XL by taking action here. Corporations Special Report The PRW Staff The author, PRW Staff, is for short reports/compilations that are attributable to more than one staffer or for staff posts of guest reporters. If you liked this article by The PRW Staff, youll also enjoy reading: The Case that Could Decide KXL Spinning the Science on Atrazine Keystone PipeLIES Exposed: The Fact Is that KXL Can Be Stopped Add new comment Printer-friendly versionPrinter-friendly version 21904 reads Comments Laws to ensure perpetutal cleanup responsibility for profiteers Posted by Christine Lund (not verified) on August 22, 2014 - 5:26pm We need specific laws that are the same everywhere pipelines are laid. The cleanup costs and perpetual maintenance funds should be waiting for any present and all future repairs and cleanup. The property owners should be remunerated for the cost of the land and home, as if it werent in a toxic dump and multiples added should it be historic land held over one generation. Should the water be contaminated, the corporations will have to buy these properties and steward the land in perpetuity until it can be certifiably clean and made into federal parks as a reminder of what can happen if we are not responsible stewards of the land. reply More Featured Ad Recent Articles Donate to CMD! Donate to CMD! The Kochs Anti-Civil Rights Roots: New Docs Expose Charles Kochs Ties to John Birch Society Latest News Congress to Reinstate Taxpayer Subsidies for Reckless Derivatives Trading Organic Consumer Pressure Works: Stonyfield Quits International Dairy Foods Group ALEC Fumes: Transparency Threatens Corporate Free Speech! ALECrock available at https://youtube/watch?v=NXUPDAMc_6o More Corporations Flee as ALEC Rolls Out Its Legislative Agenda Koch-Tied Group Pushes New Union Busting Bill in Wisconsin Most Popular Recent Comments - See more at: prwatch.org/news/2014/02/12401/keystone-pipelies-exposed-sticky-oil-leaks-billion-dollar-spills-and-human-health#sthash.kauPljjy.dpuf
Posted on: Sun, 14 Dec 2014 01:24:21 +0000

Trending Topics



Recently Viewed Topics




© 2015