Rocket Principles A Rocket in its simplest form is a chamber - TopicsExpress



          

Rocket Principles A Rocket in its simplest form is a chamber enclosing a gas under pressure. A small opening at one end of the chamber allows the gas to escape, and in doing so provides a thrust that propels in the opposite direction. A good example of this is a balloon. Air inside a balloon is compressed by the balloons rubber walls. The air pushes back so that the inward and outward pressing forces are balanced. When the nozzle is released, air escapes through it and the balloon is propelled in the opposite direction. When we think of rockets, we rarely think of balloons. Instead, our attention is drawn to the giant vehicles that carry satellites into orbit and spacecraft to the Moon and planets. Nevertheless, there is a strong similarity between the two. The only significant difference is the way the pressurized gas is produced. With space rockets, the gas is produced by burning propellants that can be solid or liquid in form or a combination of the two. One of the interesting facts about the historical development of rockets is that while rockets and rocket-powered devices have been in use for more than two thousand years, it has been only in the last three hundred years that experimenters have had a scientific basis for understanding how they work. Today, Newtons work is usually just called the Principia. In the Principia, Newton stated three important scientific principles that govern the motion of all objects, whether on Earth or in space. Knowing these principles, now called Newtons Laws of Motion, rocketeers have been able to construct the modern giant rockets of the 20th century such as the Saturn V and the Space Shuttle. Here now, in simple form, are Newtons Laws of Motion. 1. Objects at rest will stay at rest and objects in motion will stay in motion in a straight line unless acted upon by an unbalanced force. 2. Force is equal to mass times acceleration. 3. For every action there is always an opposite and equal reaction. As will be explained shortly, all three laws are really simple statements of how things move. But with them, precise determinations of rocket performance can be made. This law of motion is just an obvious statement of fact, but to know what it means, it is necessary to understand the terms rest, motion, and unbalanced force. Rest and motion can be thought of as being opposite to each other. Rest is the state of an object when it is not changing position in relation to its surroundings. If you are sitting still in a chair, you can be said to be at rest. This term, however, is relative. Your chair may actually be one of many seats on a speeding airplane. The important thing to remember here is that you are not moving in relation to your immediate surroundings. If rest were defined as a total absence of motion, it would not exist in nature. Even if you were sitting in your chair at home, you would still be moving, because your chair is actually sitting on the surface of a spinning planet that is orbiting a star. The star is moving through a rotating galaxy that is, itself, moving through the universe. While sitting still, you are, in fact, traveling at a speed of hundreds of kilometers per second. Motion is also a relative term. All matter in the universe is moving all the time, but in the first law, motion here means changing position in relation to surroundings. A ball is at rest if it is sitting on the ground. The ball is in motion if it is rolling. A rolling ball changes its position in relation to its surroundings. When you are sitting on a chair in an airplane, you are at rest, but if you get up and walk down the aisle, you are in motion. A rocket blasting off the launch pad changes from a state of rest to a state of motion. The third term important to understanding this law is unbalanced force. If you hold a ball in your hand and keep it still, the ball is at rest. All the time the ball is held there though, it is being acted upon by forces. The force of gravity is trying to pull the ball downward, while at the same time your hand is pushing against the ball to hold it up. The forces acting on the ball are balanced. Let the ball go, or move your hand upward, and the forces become unbalanced. The ball then changes from a state of rest to a state of motion. In rocket flight, forces become balanced and unbalanced all the time. A rocket on the launch pad is balanced. The surface of the pad pushes the rocket up while gravity tries to pull it down. As the engines are ignited, the thrust from the rocket unbalances the forces, and the rocket travels upward. Later, when the rocket runs out of fuel, it slows down, stops at the highest point of its flight, then falls back to Earth. Objects in space also react to forces. A spacecraft moving through the solar system is in constant motion. The spacecraft will travel in a straight line if the forces on it are in balance. This happens only when the spacecraft is very far from any large gravity source such as Earth or the other planets and their moons. If the spacecraft comes near a large body in space, the gravity of that body will unbalance the forces and curve the path of the spacecraft. This happens, in particular, when a satellite is sent by a rocket on a path that is parallel to Earths surface. If the rocket shoots the spacecraft fast enough, the spacecraft will orbit Earth. As long as another unbalanced force, such as friction with gas molecules in orbit or the firing of a rocket engine in the opposite direction from its movement, does not slow the spacecraft, it will orbit Earth forever. Now that the three major terms of this first law have been explained, it is possible to restate this law. If an object, such as a rocket, is at rest, it takes an unbalanced force to make it move. If the object is already moving, it takes an unbalanced force, to stop it, change its direction from a straight line path, or alter its speed.
Posted on: Wed, 08 Oct 2014 10:46:57 +0000

Trending Topics



Recently Viewed Topics




© 2015