SAPPHIRE General; Category oxide mineral Formula (repeating - TopicsExpress



          

SAPPHIRE General; Category oxide mineral Formula (repeating unit) aluminium oxide, Al2O3 Identification Color often blue, but varies Crystal habit massive and granular Crystal system Trigonal Symbol (32/m) Space Group: R3c Fracture conchoidal, splintery Mohs scale hardness 9.0 Luster vitreous Streak white Specific gravity 3.95–4.03 Optical properties Abbe number 72.2 Refractive index nω=1.768–1.772 nε=1.760–1.763, Birefringence 0.008 Pleochroism strong Melting point 2,030–2,050 °C Fusibility infusible Solubility Insoluble Other characteristics coefficient of thermal expansion (5.0–6.6)×10−6/K relative permittivity at 20 °C ε = 8.9–11.1 (anisotropic) Sapphire (Greek: σάπφειρος; sappheiros, blue stone,[2] which probably referred instead at the time to lapis lazuli) is a gemstone variety of the mineral corundum, an aluminium oxide (α-Al2O3). Trace amounts of elements such as iron, titanium, chromium, copper, or magnesium can give corundum respectively blue, yellow, purple, orange, or green color. Chromium impurities in corundum yield pink or red tint, the latter being called ruby. Commonly, sapphires are worn in jewelry. Sapphires may be found naturally, by searching through certain sediments (due to their resistance to being eroded compared to softer stones) or rock formations. They also may be manufactured for industrial or decorative purposes in large crystal boules. Because of the remarkable hardness of sapphires—9 on the Mohs scale (the third hardest mineral, right behind diamond at 10 and moissanite at 9.25)—and of aluminium oxide in general, sapphires are used in some non-ornamental applications, including infrared optical components, such as in scientific instruments; high-durability windows; wristwatch crystals and movement bearings; and very thin electronic wafers, which are used as the insulating substrates of very special-purpose solid-state electronics (especially integrated circuits and GaN-based LEDs). COLORS; The sapphire is one of the three gem-varieties of corundum, the other two being ruby – defined as corundum in a shade of red—and padparadscha—a pinkish orange variety. Although blue is their most well-known color, sapphires may also be colorless and they are found in many colors including shades of gray and black. The cost of natural sapphires varies depending on their color, clarity, size, cut, and overall quality – as well as their geographic origin. Significant sapphire deposits are found in Eastern Australia, Thailand, Sri Lanka, China (Shandong), Madagascar, East Africa, and in North America in a few locations, mostly in Montana. Sapphire and rubies are often found in the same geographic environment, but one of the gems is usually more abundant in any of the sites. Blue sapphire Color in gemstones breaks down into three components: hue, saturation, and tone. Hue is most commonly understood as the color of the gemstone. Saturation refers to the vividness or brightness of the hue, and tone is the lightness to darkness of the hue. Blue sapphire exists in various mixtures of its primary (blue) and secondary hues, various tonal levels (shades) and at various levels of saturation (vividness). Blue sapphires are evaluated based upon the purity of their primary hue. Purple, violet, and green are the most common secondary hues found in blue sapphires. Violet and purple can contribute to the overall beauty of the color, while green is considered to be distinctly negative. Blue sapphires with up to 15% violet or purple are generally said to be of fine quality. Blue sapphires with any amount of green as a secondary hue are not considered to be fine quality. Gray is the normal saturation modifier or mask found in blue sapphires. Gray reduces the saturation or brightness of the hue, and therefore has a distinctly negative effect. The color of fine blue sapphires may be described as a vivid medium dark violet to purplish blue where the primary blue hue is at least 85% and the secondary hue no more than 15%, without the least admixture of a green secondary hue or a gray mask. The 423-carat (84.6 g) Logan sapphire in the National Museum of Natural History, in Washington, D.C., is one of the largest faceted gem-quality blue sapphires in existence. Sapphires of other colors; Yellow and green sapphires are also commonly found. Pink sapphires deepen in color as the quantity of chromium increases. The deeper the pink color the higher their monetary value, as long as the color is tending toward the red of rubies. In the United States, a minimum color saturation must be met to be called a ruby, otherwise the stone will be called a pink sapphire. Sapphires also occur in shades of orange and brown. Colorless sapphires are sometimes used as diamond substitutes in jewelry. Natural padparadscha (pinkish orange) sapphires often draw higher prices than many of even the finest blue sapphires. Recently, more sapphires of this color have appeared on the market as a result of a new artificial treatment method that is called lattice diffusion. Padparadscha Padparadscha is a delicate light to medium toned pink-orange to orange-pink hue corundum, originally found in Sri Lanka, but also found in deposits in Vietnam and parts of East Africa. Padparadscha sapphires are rare; the rarest of all is the totally natural variety, with no sign of artificial treatment. The name is derived from the Sanskrit padma ranga (padma = lotus; ranga = color), a color akin to the lotus flower (Nelumbo nucifera ‘Speciosa’). A star sapphire is a type of sapphire that exhibits a star-like phenomenon known as asterism; red stones are known as star rubies. Star sapphires contain intersecting needle-like inclusions following the underlying crystal structure that causes the appearance of a six-rayed star-shaped pattern when viewed with a single overhead light source. The inclusion is often the mineral rutile, a mineral composed primarily of titanium dioxide. The stones are cut en cabochon, typically with the center of the star near the top of the dome. Occasionally, twelve-rayed stars are found, typically because two different sets of inclusions are found within the same stone, such as a combination of fine needles of rutile with small platelets of hematite; the first results in a whitish star and the second results in a golden-colored star. During crystallisation, the two types of inclusions become preferentially oriented in different directions within the crystal, thereby forming two six-rayed stars that are superimposed upon each other to form a twelve-rayed star. Misshapen stars or 12-rayed stars may also form as a result of twinning. The inclusions can alternatively produce a cats eye effect if the face-up direction of the cabochons dome is oriented perpendicular to the crystals c-axis rather than parallel to it. If the dome is oriented in between these two directions, an off-center star will be visible, offset away from the high point of the dome. The Black Star of Queensland, the largest gem-quality star sapphire in the world, weighs 733 carats. The Star of India (weighing 563.4 carats) is thought to be the second-largest star sapphire (the largest blue), and is currently on display at the American Museum of Natural History in New York City. The 182-carat Star of Bombay, located in the National Museum of Natural History, in Washington, D.C., is another example of a large blue star sapphire. The value of a star sapphire depends not only on the weight of the stone, but also the body color, visibility, and intensity of the asterism. Color change sapphire A rare variety of natural sapphire, known as color-change sapphire, exhibits different colors in different light. Color change sapphires are blue in outdoor light and purple under incandescent indoor light, or green to gray-green in daylight and pink to reddish-violet in incandescent light. Color change sapphires come from a variety of locations, including Thailand and Tanzania. The color-change effect is caused by the interaction of the sapphire, which absorbs specific wavelengths of light, and the light-source, whose spectral output varies depending upon the illuminant. Transition-metal impurities in the sapphire, such as chromium and vanadium, are responsible for the color change. Certain synthetic color-change sapphires have a similar color change to the natural gemstone alexandrite and they are sometimes marketed as alexandrium or synthetic alexandrite. However, the latter term is a misnomer: synthetic color-change sapphires are, technically, not synthetic alexandrites but rather alexandrite simulants. This is because genuine alexandrite is a variety of chrysoberyl: not sapphire, but an entirely different mineral. Source of color Rubies are corundum which contain chromium impurities that absorb yellow-green light and result in deeper ruby red color with increasing content. Purple sapphires contain trace amounts of vanadium and come in a variety of shades. Corundum that contains ~0.01% of titanium is colorless. If trace amounts of iron are present, a very pale yellow to green color may be seen. However, if both titanium and iron impurities are present together, and in the correct valence states, the result is a deep-blue color. Unlike localized (intra-atomic) absorption of light which causes color for chromium and vanadium impurities, blue color in sapphires comes from intervalence charge transfer, which is the transfer of an electron from one transition-metal ion to another via the conduction or valence band. The iron can take the form Fe2+ or Fe3+, while titanium generally takes the form Ti4+. If Fe2+ and Ti4+ ions are substituted for Al3+, localized areas of charge imbalance are created. An electron transfer from Fe2+ and Ti4+ can cause a change in the valence state of both. Because of the valence change there is a specific change in energy for the electron, and electromagnetic energy is absorbed. The wavelength of the energy absorbed corresponds to yellow light. When this light is subtracted from incident white light, the complementary color blue results. Sometimes when atomic spacing is different in different directions there is resulting blue-green dichroism. Intervalence charge transfer is a process that produces a strong colored appearance at a low percentage of impurity. While at least 1% chromium must be present in corundum before the deep red ruby color is seen, sapphire blue is apparent with the presence of only 0.01% of titanium and iron.
Posted on: Mon, 24 Nov 2014 12:04:40 +0000

Trending Topics



>

Recently Viewed Topics




© 2015