Stratospheric dynamics and midlatitude jets under geoengineering - TopicsExpress



          

Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors, and sulfate and titania aerosols† A. J. Ferraro1,2,*, A. J. Charlton-Perez1and E. J. Highwood1 DOI: 10.1002/2014JD022734 onlinelibrary.wiley/doi/10.1002/2014JD022734/abstract Abstract The impact on the dynamics of the stratosphere of three approaches to geoengineering by Solar Radiation Management is investigated using idealized simulations of a global climate model. The approaches are geoengineering with sulfate aerosols, titania aerosols and reduction in total solar irradiance (representing mirrors placed in space). If it were possible to use stratospheric aerosols to counterbalance the surface warming produced by a quadrupling of atmospheric carbon dioxide concentrations, tropical lower stratospheric radiative heating would drive a thermal-wind response which would intensify the stratospheric polar vortices. In the Northern Hemisphere this intensification results in strong dynamical cooling of the polar stratosphere. Northern Hemisphere stratospheric sudden warming events become rare (1 or 2 in 65 years for sulfate and titania respectively). The intensification of the polar vortices results in a poleward shift of the tropospheric midlatitude jets in winter. The aerosol radiative heating enhances the tropical upwelling in the lower stratosphere, influencing the strength of the Brewer-Dobson Circulation. In contrast, solar dimming does not produce heating of the tropical lower stratosphere so there is little intensification of the polar vortex and no enhanced tropical upwelling. The dynamical response to titania aerosol is qualitatively similar to the response to sulfate. via Paddy
Posted on: Wed, 07 Jan 2015 16:48:41 +0000

Trending Topics



Recently Viewed Topics




© 2015