What does an oceanographer do? Oceanography covers a wide range - TopicsExpress



          

What does an oceanographer do? Oceanography covers a wide range of topics, including marine life and ecosystems, ocean circulation, plate tectonics and the geology of the sea floor, and the chemical and physical properties of the ocean. Just as there are many specialties within the medical field, there are many disciplines within oceanography. Biological oceanographers and marine biologists study plants and animals in the marine environment. They are interested in the numbers of marine organisms and how these organisms develop, relate to one another, adapt to their environment, and interact with it. To accomplish their work, they may use field observations, computer models, or laboratory and field experiments. Chemical oceanographers and marine chemists study the composition of seawater, its processes and cycles, and the chemical interaction of seawater with the atmosphere and sea floor. Their work may include analysis of seawater components, the effects of pollutants, and the impacts of chemical processes on marine organisms. They may also use chemistry to understand how ocean currents move seawater around the globe and how the ocean affects climate or to identify potentially beneficial ocean resources such as natural products that can be used as medicines. Geological oceanographers and marine geologists explore the ocean floor and the processes that form its mountains, canyons, and valleys. Through sampling, they look at millions of years of history of sea-floor spreading, plate tectonics, and oceanic circulation and climates. They also examine volcanic processes, mantle circulation, hydrothermal circulation, magma genesis, and crustal formation. The results of their work help us understand the processes that created the ocean basins and the interactions between the ocean and the sea floor. Physical oceanographers study the physical conditions and physical processes within the ocean such as waves, currents, eddies, gyres and tides; the transport of sand on and off beaches; coastal erosion; and the interactions of the atmosphere and the ocean. They examine deep currents, the ocean-atmosphere relationship that influences weather and climate, the transmission of light and sound through water, and the oceans interactions with its boundaries at the sea floor and the coast. All of these fields are intertwined, and thus all oceanographers must have a keen understanding of biology, chemistry, geology, and physics to unravel the mysteries of the world ocean and to understand processes within it. ocean basin ocean basin, any of several vast submarine regions that collectively cover nearly three-quarters of Earth’s surface. Together they contain the overwhelming majority of all water on the planet and have an average depth of almost 4 km (about 2.5 miles). A number of major features of the basins depart from this average—for example, the mountainous ocean ridges, deep-sea trenches, and jagged, linear fracture zones. Other significant features of the ocean floor include aseismic ridges, abyssal hills, and seamounts and guyots. The basins also contain a variable amount of sedimentary fill that is thinnest on the ocean ridges and usually thickest near the continental margins. General features While the ocean basins lie much lower than sea level, the continents stand high—about 1 km (0.6 mile) above sea level. The physical explanation for this condition is that the continental crust is light and thick while the oceanic crust is dense and thin. Both the continental and oceanic crusts lie over a more uniform layer called the mantle. As an analogy, one can think of a thick piece of styrofoam and a thin piece of wood floating in a tub of water. The styrofoam rises higher out of the water than the wood. The ocean basins are transient features over geologic time, changing shape and depth while the process of plate tectonics occurs. The surface layer of Earth, the lithosphere, consists of a number of rigid plates that are in continual motion. The boundaries between the lithospheric plates form the principal relief features of the ocean basins: the crests of oceanic ridges are spreading centres where two plates move apart from each other at a rate of several centimetres per year. Molten rock material wells up from the underlying mantle into the gap between the diverging plates and solidifies into oceanic crust, thereby creating new ocean floor. At the deep-sea trenches, two plates converge, with one plate sliding down under the other into the mantle where it is melted. Thus, for each segment of new ocean floor created at the ridges, an equal amount of old oceanic crust is destroyed at the trenches, or so-called subduction zones. It is for this reason that the oldest segment of ocean floor, found in the far western Pacific, is apparently only about 200 million years old, even though the age of Earth is estimated to be at least 4.6 billion years. The dominant factors that govern seafloor relief and topography are the thermal properties of the oceanic plates, tensional forces in the plates, volcanic activity, and sedimentation. In brief, the oceanic ridges rise about 2 km (1.2 miles) above the seafloor because the plates near these spreading centres are warm and thermally expanded. In contrast, plates in the subduction zones are generally cooler. Tensional forces resulting in plate divergence at the spreading centres also create block-faulted mountains and abyssal hills, which trend parallel to the oceanic ridges. Seamounts and guyots, as well as abyssal hills and most aseismic ridges, are produced by volcanism. Continuing sedimentation throughout the ocean basin serves to blanket and bury many of the faulted mountains and abyssal hills with time. Erosion plays a relatively minor role in shaping the face of the deep seafloor, in contrast to the continents. This is because deep ocean currents are generally slow (they flow at less than 50 cm [20 inches] per second) and lack sufficient power.
Posted on: Thu, 16 Oct 2014 03:21:32 +0000

Trending Topics



Recently Viewed Topics




© 2015