nt. The antibodies specifically recognize and bind an HIV surface - TopicsExpress



          

nt. The antibodies specifically recognize and bind an HIV surface protein called gp41. The virus uses gp41 like a long spike to poke holes in its host’s immune cells. But when 4E10 antibodies clog up gp41, the virus is neutralized and host cells are protected. 4E10 especially interests HIV researchers because the antibody recognizes and binds to gp41 on the surface of many different strains of the virus, not just the one strain with which the patient was most recently infected. If a vaccine could be made to specifically and safely stimulate 4E10-like production, recipients would likely be protected against multiple HIV strains. In humans, HIV slowly destroys the immune system, leading to Acquired Immune Deficiency Syndrome (AIDS). According to the Centers for Disease Control and Prevention, more than 1.1 million people in the U.S. are living with HIV infection. While treatments developed in the past decade can keep the virus in check for many years, there is no vaccine and there is no cure. Proceeding with caution In several ongoing studies, the TSRI team and others are working out how to make a vaccine that stimulates the production of 4E10, b12 and other broadly neutralizing anti-HIV antibodies. However, this latest study indicates that this approach might be complicated by unwanted self-reactivity. Antibodies that cross-react with host tissue—like 4E10 has now been shown to do—are associated with autoimmune diseases such as multiple sclerosis and lupus. The TSRI study also raises the question of how 4E10 was generated in the first place. According to Nemazee, 4E10 may be a fluke, cropping up in an HIV patient who was also prone to autoimmune diseases. Alternatively, the autoreactive antibody could have arisen in the patient as a consequence of the disease—perhaps the body’s normal mechanism for weeding out such antibodies failed, allowing the serendipitous production of an anti-HIV antibody. Despite this new concern, there is still hope for 4E10’s role in HIV vaccine development. A companion paper published in the same issue of The Journal of Immunology found that another potent, broadly neutralizing anti-HIV antibody, b12, was not self-reactive and could respond to a candidate vaccine preparation provided by Richard Wyatt, TSRI Prof. of Immunology and Director of Viral Immunology at the International AIDS Vaccine Initiative Neutralizing Antibody Center. Source: Scripps Research Institute
Posted on: Tue, 24 Sep 2013 02:26:49 +0000

Trending Topics



Recently Viewed Topics




© 2015